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corresponding to fix). 
Hodges (1951) who were concernedwith nonparametric discrimination. 
work in this paper also arose out of work on the nonparametric discri- 

A n  exception to this statement was Flx and 
"he 
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~. Let xl, . *,x n be n independent 
observations on a p-dimensional random variable X = (%, . ,X ) with 
absolutely continuous distribution ftmction F(xl, . . ,x -1. 
considered here is Ithe estimation of the probability density function 
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estimated. Pnrzen (1$62), e.g., chooses an h(n) which i s  a f'unction of 
n and this h (n) determines the size of a neighborhood about 2. l b i s  

h(n) is a constant fo r  each n and does not depend on the observations 
xl, ..., x In t h i s  paperk random neighborhood which is a function of a 
and of the observations 5, . . ,x is chosen3 Fix and Hodges  (19%) use 

a somewhat similar approach i n  one special  case which they consider but 
a l l  other authors mentioned above use an approach similar to Parzen's. 
An estimate based on this random n3ighborhood is proposed and shown t o  be 
consistent.l A special  case is considered which i l l u s t r a t e s  how estimates 
can be obtained i n  cer ta in  cases other than those expl ic i t ly  considered 

' 
n 

n 

i 

here . 
The efficiency of the estimate proposed herein fo r  f inite sample 

size n is not studied in  this paper. 
is planned and w i l l  involve suue numerical comparisons with other estirpates. 

However, further work i n  this area 

2. Preliminaries and notation. Le t  xl, . .,x be a sample of n 
An 

n 
p-dimensional observations on a random variable X = (X1,. . . ,Xp) . 
observation x. on X is x = (xu, ..., x 

c o n t i n m s  distribution f'unctim F(xl, . . ,xp) . 
flrnction f(xl, ...., x ), as given in  (1.1)~ ex is t s  ahnost everywhere. 
estimate is desired f o r  the density f at a point z = (zl,. . . ,z ) where f 

is posit ive and continuous. 

). Assume X has an absolutely 
1 i P i  

The corresponding density 

~n P 
P 

L e t  d(X,Z) represent the p-dimensional Euclidean distance fluxtion 
IX-21. A z of radius r will be designated by 

'r, z' The volune o r  measure of the sphere 

(2; 1) d(X,Z)'='  IX-zl, . 
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Using this notation and noting that  A - 0 i f  and only if 
r, 

r - 0, we have 

(2.4) f(z1,.0.,z P ) = r-o 4% sr,z}/Ar,z, 

i.e. there exists an R such that if r < R then 

(2.5) 

for arbi t rary E > 0. 
In the preceding paragraph the hrclidean distance f'unction is  

used. 
as w e l l  have been used. 

simply because it seems the nstursl one t o  use here. 

There and i n  the work which follows any other metric could jus t  
The Euclidean distance function is being used 

According t o  (2.5), f 
can be made as ne f (  zl,. . . ,z ) as one chooses by 

l e t t i n g  r approach zero. <X E Sr,J is  unknown since it depe ds on 
P 

te" r - 
density f being estimated. 

can be found it can be substituted i n  the expression P 

Therefore if a good estimate of 

and t h i s  should provide a good estimate of the density f at  2. This is 
w i l l  be used here. 

a non-decreasing sequence of posit ive integers 
t o  more general k(n) with minor diff icul ty)  

such that 

(3.1) 
. -  

and 

lim. k(n) = - 
n - a  

lim. k(n)-/cn = 0. 

n w 
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Thege are very important conditions i n  the work of t h i s  paper. 
4?q&icitly control t he  size of the neighborhoods being chosen about the 
point z i n  such a way that the  proposed estimate of f ( z )  w i l l  be 

consistent. If [ g  is the greatest integer f'unction then k(n) = Lbnp 
where b is a cons&nt and 0 < 6 < 1 w i l l  sa t i s fy  the conditions i n  (3.1). 
In v i e w  of the way i n  which k(n) will be used i n  this paper we w i l l  also 
require that k(n) 6 n f o r  a l l  n. 
somewhat .  

choosing of k(n) i n  practice. 

coverages (cf. mid (1943), Tukey (197), or W i l k s  (1962)). 
xl, ..., x be a sample of s ize  n from a p-dimensional dis t r ibut ion of the 
type discussed ear l ie r ,  i.e. x. = 

ordering function rp (x) = I'x-zI is  introduced where Ix-z{ is  as defined i n  
(2.1) . Then w = 9 (x) is a randm variable which has a continuous 
dis t r ibut ion ftmction, say H(W). 

They w i l l  

This w i l l  restrict the choice of b 
Further work is planned which should help i n  the problem of 

!Be discussion i n  this paragraph is based on the theory of 

Let  

n 
(xE, . . . ,x ) fo r  i = 1,. ..,no An 

1 P i  

Consider the new random variables 
where w = cp (x. ) f o r  i = 1,. . . ,n. L e t  the ordered Wl, w p * * ' , w  n i 1 

wits be W ( ~ ) , . . . , W ( ~ ) .  

H ( W ( ~ ) )  , ,c 

blocks B (1) , ..., Bp (n+l) are the dis joint  gar t s  that the p-dimnsional 

The coverages are c1 = H(W(~)), c2 = H(w(~)) - 
= 1 - H(w ) . The corresponding p-dimensional sample 

n+l ( 4  

P 
space is  divided in to  by the ordering curves rp (x) = w ( ~ )  f o r  i = 

1,. . . ,n. .(.p'i)} = c for  i = 1,. . .,n. The distance f r o m  z t o  the x5 
# - .  

i 

Therefore B consists of those points inside a 

T h i s  sphere is the ordering 
(1) P 

closest  t o  it is  w 

p-dimensions1 sphere about z of radius w 

curve cp (x) = w ( ~ ) .  B (k) consists of those points which are inside a 

p-dimensional sphere of radius w 

(1). 

P 
about z but which are not i n  

(k) 
, . . . ,B (k-l) fo r  k = 1, . . . ,n. B (n+l) consists of those points 

P P 
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outside a p-dimensional sphere of radius w about Z. For convenience 

we now s e t  w 
(d 

= r fo r  kd, ..., n. The sum of the first k blocks, 
(k) k 

(l) + ...+B (“) j  consists of those points inside a sphere of radius 
BP P 

k The sum of the corresponding coverages c +...+e 1 r about z ,  viz.  Sr 
k k> z* 

f- 7 
is equal t o  + E s 

references given e a r l i e r  i n  this  paragraph U has a Beta distribution with 

(k, n-k+l) degrees of freedom. 

which we s e t  equal t o  U . Ely the theory i n  the r p l  k 

k 

It is convenient to think o f t h e  k i n  the preceding paragraph as 
the k of (3.1) as this  is the way we w i l l  use it i n  the sequel. 
be recalled that 

It should 

mk = k/(n+l) 

var (Uk) = k(n-k+l)/(n+l) (n+2) 2 (3.2) 

We now define an estimate for the density f a t  the point z = ( z ,  , . . J ~ - )  , 
where f is positive and continuous. Put 

1. Y 

where r is as 
a sample x, . k 

~ I 

kth closest xi 

defined above. 

.,x i s  available one determines r as the  distance t o  the 

t o  z and then proceeds t o  compute ,fn(z) as given i n  (3.3). 

In  other words, once k(n) is chosen and 

n k* A 

It should be noted t h a t  t h i s  estimate is  par t icular ly  easy t o  obtain in  
practice. 

TKEOREM 3.1. 
n 

The density estimator f (z) as given i n  (3.3) i s  consistent. n 
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Proof. The first s tep in  t h i s  proof i s .  t o  show that f (  zl,.. . , z ) can 
. P  f ’I 

This i s  done by showing that 

P 

{X E Srk,.> is equal t o  U . Therefore using (3.2) and the 
k 

Tchebysheff inequality we have for arbi t rary E > 0 

2 2 = k(n-k+l)/(n+l) (n+2)~ . 
Using the conditions (3.l),the right hand side of (3.4) is seen t o  
converge t o  zero. 

again gives k/(n+l) - 0. 
Thus f o r  large n the r ight  hand side of (3.4) can be 

made a rb i t r a r i l y  small. That i s  Uk-k/(n+l) - P 0. U s i n g  (3.1) 
Combining these two results gives 

(3.5) Uk = {x E srkYz} L 0. 

However, this can happen only i f  the measure of S v i Z .  Ar rk> ” kjZY 

converges i n  probability t o  zero, by the continuity assumptions. 

turn can occur i f  and only if  rk- 0. 

L e t  R be as defined i n  (2.5): k 
N such that i f  IM, and for  arbitrary q > 0 

?his i n  
P 

P Since r - 0, there ex is t s  an 

Using (2.5) and (3.6) the following statement can be made. 
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I f n > N  

(3.7) 

w h e r e  E is as defined previously in  (2.5) . Thus 

This concludes the first par t  of the proof. 

The concluding portion of the proof goes as follows. 

P (3.8) U d A r  - f (zl, ..., z ) or  rewriting this 
k” P 

If it can be shown tha t  the numerator of (3.9), viz. C(n+l]/k]Uk, 

converges i n  probability t o  1, then it will  follow tha t  the denominator, 
will  converge i n  probability t o  l/f( zl, . . . , z *) 

ViZ. Un+l)/k1Ar k’ z’ P 

This last  statement i s  equivalent t o  - 

This is the-desired conclusion of the theorem. 
that [(n+l)jiJ% -L 1. 

It remains then t o  show 
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The variance i n  (3.U) approaches zero by (3.1)- 
inequality and fo r  arbi t rary E > 0 

Using the Tchebysheff 

= [Uk] [(n-k+l)/(n+2)~~] . 
Since for  large n the r ight  hand side of (3.12) can be made arbitrarily small 
w e  have 

P (3.15) C(n+l)/kl% - 1. 
Thus (3.10) follows from the argument above and the theorem i s  proved. 

It w a s  mentioned ea r l i e r  t h a t  the neighborhoods determined about the 
point z would be randam. 
about z are essent ia l ly  determined by r which is  indeed a randm variable. 
It depends on the observations x1, ..., x which seems t o  be a desirable 

feature. 

It can now be noted that the  neighborhoods 

k 
n 

A 
n 

we con- n i n  order t o  use it a t  a point which does not 
satisfy the continuity assumptions of the previous work. 
problem w i l l  be considered but a similar technique can be applied t o  

many other cases. 

4. A modification of f ( z )  In t h i s  section 

A special  

Fix and Hodges (1951) have encountered the par t icular  

problem considered here i n  t h e i r  work on nonparametric discrimination. 

and f i s  positive and continuous on [a,-). 
desired. By definit ion f ( a )  i s  

L R t  X be a univariate random variable with f(x) =O f o r  x < a, 
An estimate fo r  f ( a )  is 

(4 1) l i m .  lF(a+h) - F(a)) - A i m -  F(a+h) . 
h - h- v -  h f(a) = h- 
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This statement corresponds t o  (2.4) in the general case. 
h i s  the length of the interval  [a, a+h). 

about a where f is  continuous as f is  continuous on the right only a t  the 

point a. The theory of coverages used i n  the development of fn(z) i n  the 

previous section required central intervals or  neighborhoods about the 

point 2. Thus some slight modifications are  required. 

In this case 
There is  no central  interval  

A 

The observations x(~), . . . , x ( ~ )  are ordered as t o  distance From 
z = a since X is univariate and since f(x) = 0 for  x < a which implies 

that a l l  x 
necessary here. Consider the  blocks = b,x(,$, B1 - 

>,a. Therefore the ordering f'unction d(x,z) is not 
( i )  ( 2 )  - 

Corresponding t o  these blocks are coverages c1 = F ( X ( ~ ) ) ,  

k 
Uk = c +... f c 1 

and 

The measure of this last sum of blocks is  x - a. The variable Uk 
(k) 

has the same distribution as it had previously. 
now i n  gett ing an estimate fn(a) f o r  f (a )  is  the same as that i n  de- 

ve l a s ing  f ( 2 )  i n  the general case. 
4 fn(a) = [k/(n+l)l [l/(x(k) - a) J Y  

Therefore the procedure 
A 

+ This leads us t o  define 
n 

which i s  a consistent estimate f o r  f(a). 
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